840-Point Prime Factor FFT Algorithm by Microprocessor 用微处理机实现840点素因子FFT算法
This paper presents an assembly program that calculates the discrete Fourier transform using a prime factor algorithm, Which is an efficient algorithm for long transforms, and is faster than both the Cooley-Tukey algorithm and the Winograd nested algorithm. 对于长变换,素因子算法是一种有效的计算方法。素因子算法的运算速度比Cooley&Tukes的基2FFT算法和Winograd的嵌套结构算法都要快。
A prime factor DFT Algorithm for 840 Complex data is presented in this paper. 本文推导了840点素因数分解的离散傅里叶交换的算法。
In this paper, a self-permuting in-place prime factor FFT parallel algorithm is presented, and its implementation on a YH computer is described. 本文提出一种自排序同址素因子FFT并行算法,并介绍了这种算法在银河(YH)机上的实现。
Index Mappings of a New Kind of Prime Factor Algorithm of FFT 一类素因子分解FFT算法的指标映射
A Self-Permuting In-Place Prime Factor FFT Parallel Algorithm and Its Implementation 自排序同址素因子FFT并行算法及其实现
Extension of index mapping for prime factor algorithm of FFT 素因子分解FFT算法及其指数映射
A prime factor discrete Fourier transform algorithm for 840 complex data 840点素因数分解的DFT算法